Role of the nucleotide excision repair gene ERCC1 in formation of recombination-dependent rearrangements in mammalian cells.

نویسندگان

  • R G Sargent
  • J L Meservy
  • B D Perkins
  • A E Kilburn
  • Z Intody
  • G M Adair
  • R S Nairn
  • J H Wilson
چکیده

Spontaneous recombination between direct repeats at the adenine phosphoribosyltransferase (APRT) locus in ERCC1-deficient cells generates a high frequency of rearrangements that are dependent on the process of homologous recombination, suggesting that rearrangements are formed by misprocessing of recombination intermediates. Given the specificity of the structure-specific Ercc1/Xpf endonuclease, two potential recombination intermediates are substrates for misprocessing in ERCC1(-) cells: heteroduplex loops and heteroduplex intermediates with non-homologous 3' tails. To investigate the roles of each, we constructed repeats that would yield no heteroduplex loops during spontaneous recombination or that would yield two non-homologous 3' tails after treatment with the rare-cutting endonuclease I-SCE:I. Our results indicate that misprocessing of heteroduplex loops is not the major source of recombination-dependent rearrangements in ERCC1-deficient cells. Our results also suggest that the Ercc1/Xpf endonuclease is required for efficient removal of non-homologous 3' tails, like its Rad1/Rad10 counterpart in yeast. Thus, it is likely that misprocessing of non-homologous 3' tails is the primary source of recombination-dependent rearrangements in mammalian cells. We also find an unexpected effect of ERCC1 deficiency on I-SCE:I-stimulated rearrangements, which are not dependent on homologous recombination, suggesting that the ERCC1 gene product may play a role in generating the rearrangements that arise after I-SCE:I-induced double-strand breaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1.

Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RADIO gene, we disabled the gene by targeted knockout. Partial tandem dup...

متن کامل

Cells from ERCC1-deficient mice show increased genome instability and a reduced frequency of S-phase-dependent illegitimate chromosome exchange but a normal frequency of homologous recombination.

The ERCC1 protein is essential for nucleotide excision repair in mammalian cells and is also believed to be involved in mitotic recombination. ERCC1-deficient mice, with their extreme runting and polyploid hepatocyte nuclei, have a phenotype that is more reminiscent of a cell cycle arrest/premature ageing disorder than the classic DNA repair deficiency disease, xeroderma pigmentosum. To underst...

متن کامل

DNA repair gene Ercc1 is essential for normal spermatogenesis and oogenesis and for functional integrity of germ cell DNA in the mouse.

Ercc1 is essential for nucleotide excision repair (NER) but, unlike other NER proteins, Ercc1 and Xpf are also involved in recombination repair pathways. Ercc1 knockout mice have profound cell cycle abnormalities in the liver and die before weaning. Subsequently Xpa and Xpc knockouts have proved to be good models for the human NER deficiency disease, xeroderma pigmentosum, leading to speculatio...

متن کامل

Deletion of the Nucleotide Excision Repair Gene Ercc1 Reduces Immunoglobulin Class Switching and Alters Mutations Near Switch Recombination Junctions

The structure-specific endonuclease ERCC1-XPF is an essential component of the nucleotide excision DNA repair pathway. ERCC1-XPF nicks double-stranded DNA immediately adjacent to 3' single-strand regions. Substrates include DNA bubbles and flaps. Furthermore, ERCC1 interacts with Msh2, a mismatch repair (MMR) protein involved in class switch recombination (CSR). Therefore, ERCC1-XPF has abiliti...

متن کامل

DNA structural elements required for ERCC1-XPF endonuclease activity.

The heterodimeric complex ERCC1-XPF is a structure-specific endonuclease responsible for the 5' incision during mammalian nucleotide excision repair (NER). Additionally, ERCC1-XPF is thought to function in the repair of interstrand DNA cross-links and, by analogy to the homologous Rad1-Rad10 complex in Saccharomyces cerevisiae, in recombination between direct repeated DNA sequences. To gain ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 28 19  شماره 

صفحات  -

تاریخ انتشار 2000